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NUMERICAL INVESTIGATION OF RECIRCULATION FLOWS IN A THREE-DIMENSIONAL CAVERN 

V. M. Belolipetskii and V. Yu. Kostyuk UDC 519.6:532.5 

The problem of viscous incompressible fluid flow in a three-dimensional cavity initiated 
by a moving upper lid is considered. The numerical solution of the Navier-Stokes equations is sought 
on a grid with diversity velocities in the vector potential-vortex variables. New structures 
corner vortices and Taylor-GSrtler type vortices inherent to three-dimensional flows are ob- 
tained numerically. The dependence of the flow nature on the Reynolds number Re and on the 
ratio between the cavity width to its depth is investigated. 

In a number of cases spatial effects can substantially influence the incompressible fluid 
flow pattern. Consequently solutions obtained when using two-dimensional approximations dif- 
fer significantly from the experimental data. A typical example is the problem of viscous in- 
compressible fluid flow in a three-dimensional cavity with a moving upper lid. Application 
of the two-dimensional Navier-Stokes equations assumes that the cavity width L (Fig. i) is 
much greater than its depth H. The ratio of the width to the depth of channels varied between 
1 and 3 in known experiments [i, 2]. The presence of endface walls and the boundedness of 
the channel width cause considerable flow reconstruction as compared with the plane case. 
Numerical computations of viscous fluid flow in a cubic cavern are performed in [3, 4] by 
using pseudospectral and implicit multigrid methods. 

FORMULATION OF FLUID FLOW PROBLEMS IN TWO- AND THREE-DIMENSIONAL CHANNELS WITH A MOVING LID 

The problem of two-dimensional fluid flow in a cavity of rectangular section with a 
moving lid is typical for testing different numerical algorithms [5, 6]. A viscous incom- 
pressible fluid flow is examined in a rectangular domain of length B and height H. The fluid 
is at rest at the initial time, and the upper lid is set in motion at a constant velocity u 0. 
Adhsesion conditions are given on the cavern boundaries. It is required to determine the 
stationary laminar flow pattern as a function of Re. 

The problem is the following for flows in a three-dimensional cavern. The solution is 
sought in a domain D (Fig. I) 

D = {(x, y, z):O<~x<~B, O<~y<~H, O~<z~<  L}. 

The moving l i d  ( y  = O) moves f rom r i g h t  t o  l e f t .  The b o u n d a r y  c o n d i t i o n s  a r e :  u ( x ,  O, z)  = 
1, v ( x ,  O, z )  = w(x ,  O, z )  = 0 f o r  y = O; t h e  v e l o c i t y  v e c t o r  c om pone n t s  u ,  v ,  w e q u a l  z e r o  
on the remaining boundaries. The initial conditions are selected either as at rest (u = v = 
w = O) or values of the desired parameters are used for a certain smaller Re. 
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TABLE i 

Re Grid  ~max Source  

iO00 

3200 

5000 

128X 128 
40• 40 

t28• t28 
40 X 40 

257 X 257 
60 X 60 

0,it8 
0,1i2 

0,120 
0,109 

0,1i9 
0,1045 

j 
,/ I I ~  

This. paper N I "l 

This paper i 

[6] ~- e - 1 

This paper Fig. i 

DESCRIPTION OF THE COMPUTATION ALGORITHM 

The equations are written in vector potential-vortex variables in this paper to study 
the viscous incompressible fluid flows. A numerical algorithm is applied that assures the 
vortex vector will be solenoidal at each time step and does not require formulation of bound- 
ary conditions for it on the solid surface [7, 8]. 

The question of finding the correct vortical characteristics is of great value in solv- 
ing incompressible fluid flow problems. Utilization of conservative difference schemes [9] 
is recommended. It turns out that upon the approximation of the momentum equation (in the 
two-dimensional case) containing just the conservative terms 0u + (Y'V)V = 0, by certain 
conservative difference schemes (Lax-Wendroff, "with donor cells," MacCormack) keeping the 
total momentum unchanged in the domain, conservation of the velocity vortex is not assured, 
fictitious vortex sources and sinks are introduced [i0]. Schemes that conserve the vortex 
during convective transport, are called m-conservative. It is proposed to use the momentum 
equation in the Gromeka-Lamb form, for which all the divergent schemes are m-conservative. 
The MacCormack scheme is used in this paper for equations of Gromeka-Lamb form. 

RESULTS OF TWO-DIMENSIONAL FLOW COMPUTATIONS 

The coordinates of the center of the vortex and the intensity of the circulation flow 
~max are important flow characteristics in atwo-dimensional channel. A comparison of 
values found for the intensity of the main circulation flow in a square channel (B = H) with 
"standard" solutions [6] is presented in Table i. The velocity profiles are in good agree- 
ment. For instance, according to the results of computations in this paper Uma x = 0.372, 
0.412 in the section x = B/2 for Re = I000 and 5000, while the "standard" values of the 
maximal velocity are, respectively, 0.383 and 0.436. As the grid becomes finer, convergence 
of the solution to the "standard" is observed. Thus, the deviation of the found solutions 
from the "standards" does not exceed 2% in all the parameters on a 80 • 80 cell grid. Util- 
ization of ~-nonconservative schemes results in a noticeable reduction in the circulation 
flow intensity (by 12% for Re = i000 and 30% for Re = 5000) and to distortion of the velocity 
profiles in the sections x = B/2 and y = H/2. 

Computations were performed of the stationary flow in a cavity of square section at a 
given velocity on the upper boundary in the form [5] u = -16x2(i - x) 2 Values of ~max, 

1 

max u(0,5, y), [~ (x,l)dx o b t a i n e d  by  t h e  a u t h o r s  by  u s i n g  t h e  MacCormack scheme f o r  Re = 4 0 0 ,  
Y. 0 

Ax = Ay = 1 / 2 0  a r e  c o m p a r e d  i n  T a b l e  2 w i t h  d a t a  o f  c o m p u t a t i o n s  i n  [ 5 ] .  A scheme w i t h  more  
a c c u r a t e  r e s u l t s  i s  r e p r e s e n t e d  f r o m  a s e c o n d  o r d e r  scheme [ 5 ] .  I t  i s  s e e n  t h a t  t h e  c o m p u t a -  
t i o n  d a t a  f rom t h e  p r o p o s e d  a l g o r i t h m  a r e  c l o s e r  t o  t h e  r e s u l t s  by a f o u r t h - o r d e r  H e r m i t i a n  
me thod  a s  c o m p a r e d  w i t h  o t h e r s  d e s c r i b e d  i n  [ 5 ] .  

RESULTS OF FLOW COMPUTATIONS IN A THREE-DIMENSIONAL CHANNEL 

Detailed data of experimental flow investigations in a three-dimensional cavern with a 
moving lid are presented in [i, 2]. The main attention in these papers is paid to a study 
of the flow in the domain of the trailing secondary vortex i, and specific three-dimensional 
formations, corner vortices 2 (Fig. I) and Taylor-~ortler type vortices (TG, Fig. 2). 

Numerical computations are performed on a uniform grid with space steps A = Ax = 5y = 
5z = 1/16. Separate results are obtained on a grid with the step A = 1/32. The velocity 
field in the plane of symmetry is determined by the vector potential component z whose values 
are used for comparison with two-dimensional computations. Numerical modeling is performed 

94 



z 

++11 +~+1++++++++ 4 + ~ 4 + + + + + + + I + i + + + + + + + + i I +  i + l + + i + ~ l + + + + l [ i g $ + / + + + r  
+ + + + ~ + b ~ l + + + + + b + b u  . ~ + ~ t + ~ + 4 + + l + + P 6 + + + ~ l l + ~ [  ll+I+l++++++IVl++t+1+O+1|+++tJ++r162 + 
. l+  ++++++ + + ~ ,+ + + +~+~P + l  + + + + + + + + . ~  + + + + v , +  .~ + 
: + , , ,  . . . .  +Jt++th+..,,,.,,,,. 
++U+ll+llt t t~L~t~t~+d~+~i~ih+~It+i~+tH++H+ ++l++l+ff+t+t+i[ffi+tt ~Pff+++tlHt+H 
:ittHl++++++};++~u+H+fi+Sh+~++!IHHi]it+++H H+]U+tm+ttht+ttt, l+ttt+ttt+lJh+ 
" + + q  + I + L +  + + + + +~ +~ + I ;  ++ + + + t ++ +++ , ~ L l t t  ~ ; , , X+ + + ++ i l l +  + + t+ ! +,H$++ ,+++,,++++tl]tl 

lltJ#:# ( tltlt++ ii+#i+ iillt!J 

Fig. 2 

TABLE 2 

Computation method 

S e c o n d - o r d e r  scheme [5] 
F o u r t h - o r d e r  H e r m i t i a n  
method [5] 

Method i n  t h i s  p a p e r  

~ m a x  

0,075 

0,0844 
0,0784 

m a x  u ( 0 , 5 ,  y )  
y 

0,i88 

0,229 
0,202 

1 
j'co (x, i) d.~ 
0 

6,94 

8,10 
7,i2 

LSV) have large dimensions and 
A = 1/16W = maxw = 0.058, with 

D 
Re = i000 the intensity of the 

for different Re when B = H, L/H = i, 2, 3. It showed that the velocity field dynamics in 
the domain D depends on the ratio L/H and on Re. In the two-dimensional case there is a sta- 
tionary solution of the problem for Re = 104 . However, nonstationary modes are realized in 

the three-dimensional case as Re and the ratio L/H grow. 

The Case L/H = I. For Re = I00 the nature of the flow in the plane of symmetry is the 
same as for L/H = ~, however, the intensity of the main circulation zone is 11% less for 
A = 1/16, 12% less for A = 1/32 and the trailing 1 and leading 3 secondary vortices (TSV and 

intensity. The transverse flows are weak: on a grid with 
A = 1/32W = 0.061, and no corner vortices are detected. For 

three-dimensional flow in the plane of symmetry is 39% less 
than in the plane case for A = 1/16, 42% less for A = 1/32, which is caused not only by ad- 
hesion to the endface walls but also by the growing transverse motions (W = 0.133, 0.151 for 

A = 1/16; 1/32) as well as by the appearance of corner vortices in the sections x = B/2, 3B/ 
4. The TSV and LSV dimensions are less than for Re = i00. 

For Re = 2000, a further attenuation occurs in the circulation flow intensity in the 

plane of symmetry as compared with the variant L/H = ~, by 46% for A = 1/16 and by 52% for 
A = 1/32. The TSV and LSV dimensions in the plane of symmetry diminish as compared with the 
case Re = i000, which is in agreement with experimental observations described in [I]. These 
tendencies hold up to Re = 3300. The solution emerges from the stationary mode in all the 
modifications. 

The Case L/H = 2. For Re = i000 the flow intensity in the plane of symmetry is 26% less 
as compared with the two-dimensional modification (A = 1/16). Dimensions and the intensity 
of the corner vortices grow with respect to the modification L/H = i. The solution emerges 
into the stationary mode. For Re = 3300, TG type vortices are formed in th~ sections x = 3B/4 
and y = 3H/4, and change location and shape with the lapse of time. For A = 1/16 there are 
from 2 to 5 such vortices at different times, for A = 1/32 one or two small vortices of low 
intensity still appear. The origination of TG type vortices are associated with curvature 

of the streamlines near the TSV and LSu and with the presence of transverse shear stresses 
[2]. A study of the velocity fields obtained by using numerical modeling permitted us to 
establish that such formations appear only in zones of secondary vortex disposition. Strong 
influence of the TG type vortices on the secondary flow size and intensity is observed. This 
is felt in the periodic change of the TSV and LSV dimensions in different sections z = const, 
which is a result of generation and destruction of TG type vortices in parts adjacent to the 
sections. Changes in the TSV and LSV dimensions are noted in experiments [2]. Attenuation of 
the flow intensity in the plane of symmetry as compared with the two-dimensional modification 
is 42% for A = 1/16 and 45% for A = 1/32. It is caused by efflux of part of the energy into 
transverse motion being amplified (W = 0.32) and in the formation of the vortical structures 
described above. The flow mode is nonstationary. 
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The Case L/H = 3. For Re = i000 an intensive fluid flow is formed along the z axis 
in the plane x = B/2, the dimensions of the corner vortices grow with respect to the case 
L/H = 2 and the solution is stationary. For Re~2000, the flow becomes nonstationary, and 
vortices of TG type occur and vanish in different sections x = const and y = const. The v, w 
velocity field in the section x = 3B/4 is presented in Fig. 3 for Re = 3300, referred to the 
maximal value of the velocity in the section mentioned. Only the velocity directions are 
superposed in Fig. 3. 

Vortices of TG type and corner vortices are seen clearly in the figures. A similar 
flow configuration is observed in experiments [2], where periodic origination and disap- 
pearance of the mentioned vortex formations, and the change in time of the TSV and LSV dimen- 
sions and intensity are noted. Attenuation of the flow intensity by 30% in the plane of 
symmetry as compared with the data of two-dimensional computations [6] is also established 
there. According to results of the authors' computations, the flow intensity in the plane 
of symmetry is 31% less than in the two-dimensional case on the average. 

A detailed analysis of the results of a numerical experiment permitted detection of the 
presence of TG type vortices in the domain of the upper secondary vortex 4 (see Fig. I) also 
for L/H = 3 and Re = 3300. 

The computations performed showed that as Re increases for a fixed ratio L/H the flow in 
a spatial cavity becomes nonstationary, new vortex configurations, vortices of Taylor-Gortler 
type appear, whose quantity and intensity grow as Re increases. As the ratio of the cavity 
width to the depth increases from i to 3 for a fixed Re, the influence of the endface walls 
on the circulation flow intensity attenuates in the plane of symmetry while the intensity of 
the transverse motions increases. 
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APPLICATION OF THE REGULARIZATION METHOD TO DETERMINATION OF 

MULTILAYER STRATA PARAMETERS 

M. Kh. Khairullin UDC 532.546 

The problem of determining the collector properties of a multilayered petroleum stratum 
is among the class of inverse problems of underground hydromechanics; it is incorrectly for- 
mulated and nonlinear [I, 2]. Questions of the existence and uniqueness of the solution of 
this problem in the case of radial filtration in the presence of overflows through weakly 
permeable strata and infiltration were studied in [3]. The problem of determining the col- 
lector properties of a monostratum on the basis of the A. N, Tikhonov regularization method 
was considered in [4]. The present paper is its extension to the case of a multilayer stra- 
tum in the presence of overflows through weakly permeable connectors. 

i. The majority of petroleum deposits has a laminar configuration due to features 
of the cumulative settling process. If the ratio of the permeability coefficients of two 
adjacent seams is less than i0 -a then the Myatiev-Girinskii scheme is applicable [i, 2]. We 
assume known the formulation of the direct problem in formulating the inverse problem. Ac- 
cording to the Myatiev-Girinskii scheme the problem to determine the pressure fields Pl = 
p1(x, y) and P2 = P2( x, Y) ina stratum with nonpermeable roof and floor, separated by a 
weakly permeable connector reduces under separate exploitation, to solving a system of par- 

tial differential equations in a multiconnected domain F with boundaries aD = F + ~ F k (F~ 
k=l 

are circles of radius r s ~- 0.i m and centers at the points 7k) 

Lips+ (o(p~ P2) = O, L x p ~  :-div(cr~grad Pl), ( 1. 1 ) 

L2P2+ c~ P t ) =  O, L~p2~ - -d iv (%grad  p2), 

where oi, H i (i = I, 2) is the hydroconductivity coefficient and thickness of well-permeated 
seams, w = o0/H02, o0, H 0 is the hydroconductivity coefficient and thickness of the weakly 
permeable connector, with the boundary conditions 

~ ds = q~z, ,r~ = O, Ph {r = O, k = ! ,  2, l = t ,  2 . . . . .  m, (1 .2 )  
r l 

The s e c o n d  o f  t h e  c o n d i t i o n s  ( 1 . 2 )  means  t h a t  t h e  p r e s s u r e  on t h e  c o n t o u r  o f  e a c h  w e l l  i s  c o n -  
s t a n t .  

In operator form the boundary value problem (i.I) and (1.2) can be written in the form 

Lp = 0 ,  Mp = Q ,  Np = 0 ,  Pl r  = 0 .  

( L~ + coE --  o)E ) 
Here P --~ (Pl, P2); L= \ _oE L 2 q2 oE ; M----- {mkz}, N---- {n~z } are 2 x m matrices with elements 

mhz = ~k~7 n nhz =~n r t (k= 1,2, l= i, 2 .... ~ m); Q = {qhz} is the matrix of the debits. 
t 

r I 

The inverse problem is to find the quantSties o0, ol, 02 . Its initial data are the given 
debits qks the values of the face pressure Pm =Ph!rt (k ~ i, 2, l = 1,2 ..... m, m/>2) and the 
pressure functions on the boundary of the filtration domain. This inverse problem generates 
a certain implicitly given nonlinear operator 

Kazan'. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. i, 
pp. 104-109, January-February, 1990. Original article submitted April 13, 1988; revision sub- 
mitted September 5, 1988. 

0021-8944/90/3101-0097512.50 �9 1990 Plenum Publishing Corporation 97 


